Summary of Baseband Transmission

Line Coding On-Off NRZ RZ Manchester M-ary baseband signals $r_b = \frac{1}{T_b}$ γ bits/symbol (binary case γ =1) $T_s = \gamma * T_b$ $r_s = \frac{1}{T_s}$ = symbol rate $B_0 = \frac{r_s}{2}$ = minimum baseband bandwidth Symbol detection Minimum distance decision algorithm Integrate & dump is the same as filter & sample Decision based on the output of the Integrate & dump (or filter & sample) One symbol error can cause multiple bit errors ISI Pulse shaping Criteria for no ISI, p(0) = 1 (constant) and $\sum_{k=-\infty}^{\infty} p(t - kT_s) = 0$ *k*≠0 Raised cosine pulse shaping, $B_T = B_0(1+\alpha)$ Eye-diagram Analog-to-Digital (A/D) conversion PAM PCM

$(S/N)_Q \approx 6\gamma (dB)$

Summary of Time Division Multiplexing

Time frame Time slot & number of time slots/frame Number of bits/time slot Bit rate = $\frac{\pm bits/frame}{Frame Time}$ TDMA TDD Uplink and downlink TDM/PAM

Frame synchronization

Minimum baseband bandwidth= $\frac{r_s}{2}$

```
TDM/PCM

Minimum baseband bandwidth= \frac{r_b}{2}

Summary of DSB-SC

x_{DSB-SC}(t) = A_c x_{bb}(t) \cos(2 \pi f_c t)

B_{RF} = 2 B_{bb}

In general requires a synchronous (coherent) receiver, carrier recovery is needed

DSB-SC is a linear modulation

ASK is a digital modulation using DSB-SC with a specific digital baseband signal, x_{ON-Off}(t)

B_{RF} = r_b

Spectral efficiency = (1b/s)/Hz

BPSK is a digital modulation using DSB-SC with a specific digital baseband signal, x_{NRZ}(t)

B_{RF} = r_b

Spectral efficiency = (1b/s)/Hz

Power in the DSB-SC signal, A_c x(t) \cos(2 \pi f_c t), is P_{DSB-SC} = \frac{A_c^2 P_x}{2}
```

Summary of Quadrature Modulation and Multiplexing

Quadrature Multiplexing allows two signals to use (share) the same RF spectrum, one signal on the Ichannel and one on the Q-channel

Carrier recovery is required to demodulate quadrature modulated signals Quadrature modulation is used to transmit digital signals

One baseband digital signal (NRZ or M-ary) transmitted on the I-channel and one on the Q-channel

Constellation (signal-space) diagrams

Minimum distance detection of transmitted symbols-in two dimensions

Transmitter block diagram

Receiver block diagram

Relationships:

 γ bits/symbol Symbol time $T_s = \gamma T_b$ QPSK 2 bits/symbols, γ =2 M-QAM; M= 2^{γ} M-ary PSK; M= 2^{γ} Maximum spectral efficiency = γ (b/s)/Hz

Modulation Type	Maximum Spectral
	Efficency
	(b/s)/Hz
ASK	1
BPSK	1
QPSK	2
8 – ary PSK	3
16 - QAM	4
64 - QAM	6
256 - QAM	8
1024 - QAM	10

Representations of RF Signals

 $y_{l}(t) = y_{c}(t) + jy_{s}(t)$ $\operatorname{Re}(y_{l}(t)e^{j2\pi f_{c}t})$ $V(t)\cos(2\pi f_{c}t+\Theta(t))$ $y_{c}(t)\cos(j2\pi f_{c}t) - y_{s}(t)\sin(j2\pi f_{c}t)$